Gas-Cooled Reactor-Based Transmutation

Status Report

A. Baxter

July 9, 2002

Summary of Work

- Evaluating Reactor-Based Transmutation using gas-cooled, graphite-moderated (GCR) systems:
 - Developing a deployment strategy, and a deep-burn core design, and matching the core design to TRISO fuel capabilities.
- Design to maximize GCR TRU waste destruction with minimum reprocessing:
 - Utilize the high burnup capability of TRISO fuel, and fertile free core operation to minimize the complexity of recycle operations.
- Design based on the commercial GCR to minimize development cost
- Results indicate that, for the first tier, 77% total TRU waste and 95% fissile destruction should be feasible in a fuel cycle with up to 18 months between refuelings.

The Gas-Cooled (GCR) Transmutation Program

There are three elements to this program:

1) Strategy

 Develop a deployment strategy for the GCR which provides for an economical and practical use of these systems for waste transmutation.

2) Reactor-Based Transmutation Studies

- The GCR has several transmutation options.
- This year's effort is focused on the deep burn properties of the TRISO fuel.
- Determine the TRU destruction levels and mass flows for this design.

3) Fuel Development

- Match the deep burn design to the TRISO particle capabilities.
- Interface with ongoing TRISO particle development program.

Gas-Cooled reactor transmutation provides a flexible and economic approach to this problem, which can be combined with other methods.

The GCR is Flexible and Provides Options for Waste Transmutation

Deep-Burn Transmutation:

- Maximize TRU destruction in a single in-core irradiation.
- Requires only one proliferation-free reprocessing step.
- Uses two separate fuel particles:
 - » Driver fuel (DF) of LWR Np + Pu.
 - » Transmutation fuel (TF) of LWR Am + Cm, and the TRU waste from the discharged DF.
- Alternative Fuel Cycle:
 - » Recycle the discharged DF TRU waste back into the UREX process.
 - » Minimal impact on UREX process.
 - » Eliminates the extra separations step (needs head-end step only).

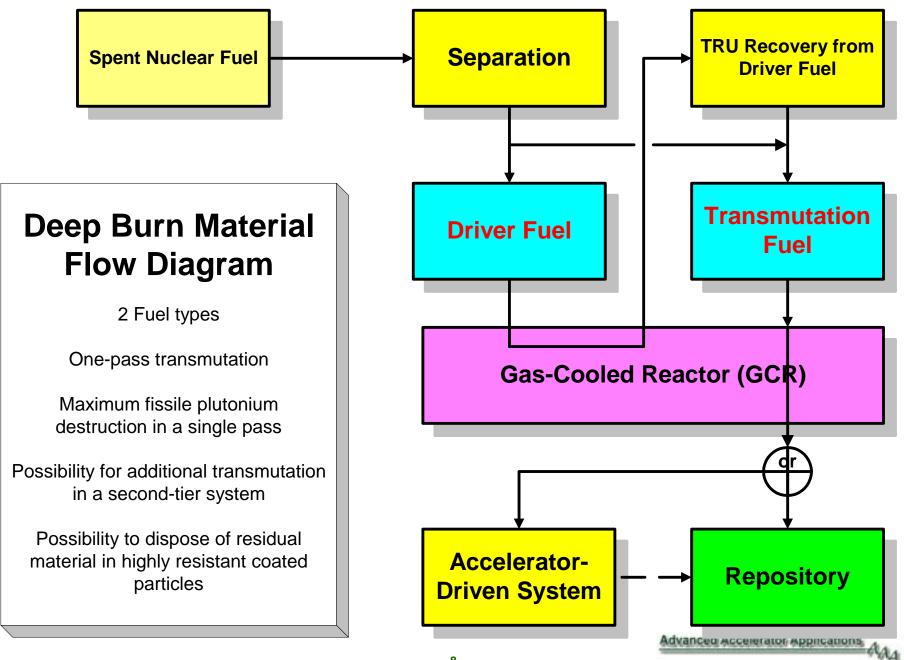
Destruction of Waste Plutonium Only:

- Use only LWR discharge plutonium and neptunium as the fuel.
- Use erbium as the burnable poison if needed.
- Can be used as a stand alone option or to allow development of the TF.
- Destroy remaining TRU in second tier

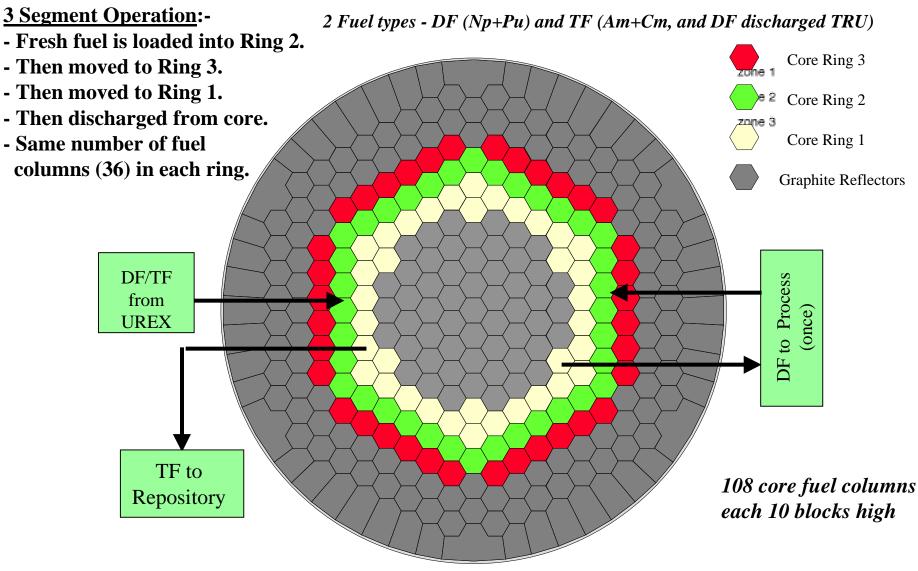
No Separation of Plutonium:

Single fuel particle of LWR TRU.

The GCR System Supports the Transmutation Program


- Provides a fertile free reactor for waste plutonium destruction
- Provides a passively safe transmutation system.
- Based on commercial plant design to minimize development costs, and encourage utility acceptance.
- High temperature operation for efficient electricity production, or hydrogen production.
- Requires fewer and smaller second tier systems.
- Minimum reprocessing requirements to improve overall economics, and minimize waste production.

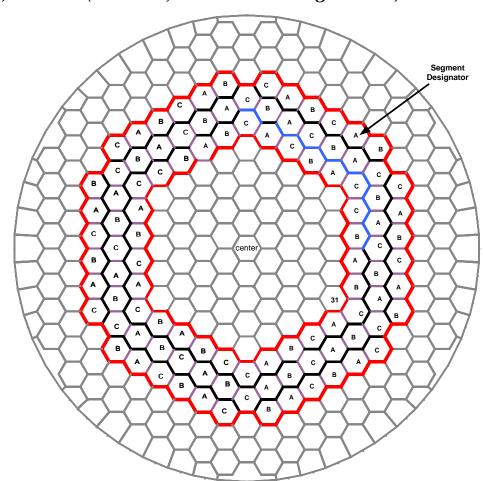
Goals for the Deep-Burn Reactor-Based Transmutation Study


- Maximize total TRU destruction without repeated reprocessing
 - Use two fuel types to maximize burnup
 - Goal is >75% total TRU destruction in first tier.
- Maximize Fissile Plutonium Destruction
 - Use fertile free fuel and whole core TRU load
 - Goal is >90% fissile plutonium destruction in first tier.
- Meet TRISO Fuels Technology program requirements:
 - Maximum fast fluence $\leq 8 \times 10^{25} \text{ n/m}^2$ (E>0.18MeV).
 - Meet fuel performance requirements based on fuel models.
- Base Design on Commercial Gas-Cooled Reactor:
 - Same components, and similar reactor operating conditions (e.g. coolant temperatures and pressure) to minimize development costs.
 - Similar core operating and safety envelope.
 - Accept a wide range of feed compositions
 - Goal is a fuel form which could be used in a commercial plant.

Gas-Cooled Transmuter Deployment Strategy

- Assume availability of a GC-MHR demonstrator in 2010-2012 that
 - Demonstrates economics, siting, and licensing
 - Operates on industry supplied Uranium Oxycarbide TRISO fuel
 - Demonstrates Hydrogen or electricity generation
- TRISO transmutation fuel would be demonstrated in this same reactor, and the technology would be applied to subsequent GC-MHR installations (4-packs) as built
- An approach to minimize startup cost has been envisioned
 - A hybrid, bench scale separation process, without DF recycle, would be applied to produce material for initial Lead Test Assemblies (LTA's)
 - A small scale fabrication facility would be used to produce LTA's, with potential to support the demonstrator reactor.
- Evaluate use of existing facilities to the maximum extent possible that would support full core production and subsequent development

"3 Ring" GCR core for Waste Transmutation


"Distributed Segment" GCR Core for Waste Transmutation

3 symmetrically distributed fuel segments (A, B, C)

2 Fuel types - DF (Np+Pu) and TF (Am+Cm, and DF discharged TRU)

Fuel in each segment stays
In the same core location
Throughout its life.

- 102 core fuel columns each 10 blocks high.
- 36 columns in outer ring.
- 36 columns in middle ring.
- 30 columns in inner ring.
- 34 columns per fuel segment.

Transmuter Study Results to Date

- 12 Month Refueling Interval:
 - 3 year residence time.
 - 95% fissile Pu and 77% total TRU destruction.
 - 468 GWD/MTM Pu particle burnup.
- 18 Month Refueling Interval:
 - 4.5 year residence time.
 - 96.5% fissile Pu and 80% total TRU destruction.
 - 500 GWD/MTM Pu particle burnup.
- 24 Month Refueling Interval:
 - 6 year residence time.
 - 97.5% fissile Pu and 83% total TRU destruction.
 - 659 GWD/MTM Pu particle burnup.
 - Equilibrium critical cycle not established.
- Deep-Burn Results being validated by Framatome.

Planned Work for Rest of FY-02

- Complete draft deployment strategy
- Complete fuel cycle results validation
- With Framatome, complete verification of physics analysis and fuel cycle.
- Confirm negative temperature coefficient.
- Complete thermal/hydraulics and stress analysis
- Complete fuel performance evaluation
- Develop licensing issues for a GCR with TRU fuel.

Looking Forward

- In FY02, we are maximizing overall TRU destruction with a design that looks like a commercial reactor.
- Allow for a phased development of the TRU fuel:
 - Plan allows initial operation with DF (Np+Pu) particle, and a burnable poison if necessary.
 - Phase in TF as qualification is completed.
- Need to provide deployment incentives for the utility industry:
 - TRU fuel that can be used in a commercial reactor, like MOX.
 - Meet commercial licensing and operating requirements
 - Competitive fuel cycle from a refueling interval standpoint.
 - Flexibility to adapt to changing input fuel forms.

Proposed FY03 Activities for GA, ORNL, and WSRC in WBS 1.50

- Select most economical tier-1 GCR fuel cycle: (\$1.2M)
 - Deep-Burn fuel cycle.
 - Pu only destruction fuel cycle.
 - No plutonium separation fuel cycle.
- Calculate and verify critical parameters for safety, performance, and operability for this cycle: (\$1.3M)
 - reactivity, heat loads, fuel requirements, etc.
- Assess material flows, costs, proliferation risk, and residual toxicity for this cycle. (\$800K)
- Define discharge for the second tier. (\$400K)
- Develop detailed deployment strategy. (\$1M)
 - compatible with commercial reactor deployment.
 - allow for phased TRU fuel qualification.
 - Evaluate incentives for commercial utility use of TRU fuel.

Total \$4M

